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Abstract

Historical census records enable researchers to track individual outcomes over
time, but linking individuals across census rounds is particularly challenging for mi-
nority and immigrant populations due to transcription errors in handwritten names.
We develop a machine learning approach that improves name transcription in his-
torical U.S. census records, addressing the specific challenges of transcribing unfa-
miliar names and dense tabular formats. Independent human transcribers disagree
on names in 30 percent of records, with higher disagreement rates for foreign-born
individuals and non-English speakers. Our machine transcriptions increase linking
rates by 147 percent for records where human transcribers disagree, while simulta-
neously improving match quality by 38 percent. These improvements help expand
sample sizes for traditionally under-linked groups - including the foreign-born, non-
white residents, and those with no formal schooling - where each additional linked
record is particularly valuable for statistical inference. Validation against independent
genealogical records confirms these gains represent genuine accuracy improvements
rather than spurious matches. Our findings demonstrate that improved transcription
methods can substantially enhance research on historically underrepresented popu-
lations in linked census data.
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1 Introduction

Tracking individual outcomes across time is central to many fundamental questions in
economics, from understanding intergenerational mobility to measuring the long-run im-
pacts of historical events. The U.S. historical census datasets from 1850 to 1950 offer un-
precedented potential for such analyses, containing socio-demographic information for
approximately 900 million person-years. However, a crucial challenge limits researchers’
ability to exploit this rich data source, particularly for minority and immigrant popu-
lations: accurately transcribing handwritten names from historical census forms. The
dense tabular format of census records, variation in handwriting styles across thousands
of enumerators, and physical degradation of documents make accurate transcription par-
ticularly difficult. These challenges are especially acute for non-English names and those
of minority populations, which were more likely to be misrecorded or anglicized. Because
of these challenges, even the best current methods can link only about half of male records
across adjacent census rounds, with substantially lower rates for non-white Americans
and immigrants (Buckles et al., 2023).

In this paper, we develop a novel machine learning approach to improve handwriting
recognition in historical census records, leading to substantial gains in census linking out-
comes particularly for traditionally under-linked populations. Our method differs from
existing approaches in three key ways. First, we utilize two independent human tran-
scriptions of the 1940 census records to build reliable training data and identify records
most in need of improvement, with particular attention to names from minority and im-
migrant populations. Second, we develop a specialized pipeline that processes census
forms more effectively than general-purpose optical character recognition (OCR) systems,
which typically struggle with handwritten data and dense tabular formats. Third, we
process handwriting character-by-character rather than as complete words, allowing us
to avoid biasing transcriptions toward common anglicized names and to provide uncer-
tainty measures for downstream linking decisions.

Our analysis yields three main results. First, for records where human transcribers
disagree—29.9 percent of our sample—our improved transcriptions increase the linking
rate from 8.4 to 20.8 percent, representing a 147 percent improvement. This dramatic in-
crease in linking success is accompanied by a 38 percent increase in match quality, as mea-
sured by the share of links validated through matching middle initials. When averaged
across all records (including those where human transcribers agreed), our improvements
increase the overall linkage rate by 12 percent.

Second, we find that our approach performs best precisely where it is most needed:
the impact on linking rates is largest in enumeration districts with the lowest legibility,
where linking rates increased by up to 35 percent. This pattern suggests our method is
particularly valuable for addressing the most severe biases in linked samples.

Third, validation against genealogical records confirms that our improvements rep-
resent genuine accuracy gains rather than spurious matches. When compared to Fam-
ilySearch.org profile names, which incorporate multiple historical sources, our machine
learning transcriptions achieve higher match rates than either Ancestry or FamilySearch
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census transcriptions for records where human transcribers initially disagreed.
This paper advances two distinct literatures. First, we contribute to research on histor-

ical census linking and the construction of longitudinal microdata. This literature has pri-
marily focused on developing better matching algorithms and expanding data sources.
Early work by Ferrie (1996) established manual methods for linking individuals across
censuses, setting standards for match quality that influenced subsequent approaches.
Abramitzky et al. (2012) and Abramitzky et al. (2014) automated these processes, enabling
large-scale linking projects. Recent advances have dramatically improved both the scale
and representativeness of linked samples. The Census Tree Project leverages genealogical
research and machine learning methods trained on family trees to create over 700 million
census-to-census pairs, achieving the highest linkage rates to date (Buckles et al., 2023;
Price et al., 2021).

However, this literature has largely treated name transcriptions as fixed inputs to the
linking process. While careful attention has been paid to handling phonetic name varia-
tions and standardizing common nicknames, the quality of the underlying transcriptions
themselves has been taken as given. Recent work by Ghosh et al. (2024) shows that tran-
scription quality materially affects linking success, and that poor legibility creates sub-
stantial selection bias in linked samples. Our contribution is to demonstrate that machine
learning can systematically improve transcription quality, particularly for traditionally
under-linked populations. Unlike approaches that rely on specialized data sources like
family trees (Hwang and Squires, 2024), our method can be applied using a generalizable
approach that scales to the full census.

Our second contribution is to the literature on automated historical document pro-
cessing. The dominant approach relies on general-purpose optical character recognition
(OCR) methods, which struggle with handwritten data and tabular formats. While spe-
cialized frameworks like LayoutParser (Shen et al., 2021) have improved processing of
historical documents such as newspaper archives (Dell et al., 2024), they face challenges
with the dense tabular structure of census records. Our key methodological innovation is
to break down census transcription into discrete steps—first identifying table structure,
then extracting individual cells, and finally processing characters independently rather
than as complete words. This approach yields three advantages: (1) it processes tabular
data more effectively than general OCR systems, (2) it avoids biasing transcriptions to-
ward common names by making character-level rather than word-level predictions, and
(3) it provides uncertainty measures that can inform downstream linking decisions.

Our work demonstrates that substantial gains in historical data construction can come
from addressing fundamental measurement issues rather than focusing solely on linking
algorithms or additional data sources. By exploiting the unique characteristics of census
records—standardized layouts, constrained character sets, and rich metadata—through
specialized machine learning approaches, we achieve dramatic improvements in both
the quantity and quality of linked records. Moreover, by focusing on transcription qual-
ity rather than linking algorithms, we show that substantial gains in historical data con-
struction can come from addressing fundamental measurement issues. The scale of our

3



improvements—doubling linking rates for targeted records—suggests that transcription
quality may be as important as matching methodology for improving linked historical
data.

The remainder of this paper proceeds as follows. Section 2 describes our machine
learning transcription system. Section 3 outlines our census data and linking framework.
Section 4 demonstrates that our improved transcriptions dramatically increase linkage
rates, with the largest gains occurring for low-legibility records that human transcribers
find most challenging.

2 Machine Learning Transcription

We develop a specialized machine learning pipeline for transcribing handwritten names
from census records. Our approach differs from general handwritten text recognition
systems by focusing specifically on the challenges of census forms: dense tabular lay-
outs, varying handwriting styles across enumerators, and the need to process millions of
standardized records efficiently. Figure 1 illustrates these challenges with a representative
census form from Rhode Island. The figure demonstrates the typical layout with its dense
tabular structure, where names and other information must be precisely located and ex-
tracted. The cramped spacing between rows and columns further complicates accurate
transcription, as letters sometimes overlap or extend beyond their intended cells. While
a human reader can distinguish these overlapping characters through context, traditional
OCR systems often fail at this task, highlighting the need for a specialized approach.

The consistency of census form layouts across millions of records allows us to opti-
mize our system specifically for this format. This section outlines our core methodology
for training data construction, model architecture, and performance metrics. Complete
technical details are provided in Appendix A.

2.1 Training Data Construction

The quality of machine learning transcription depends critically on the training data, but
ensuring accuracy in historical handwritten records poses significant challenges. Most
historical datasets rely on a single human transcription, which is typically treated as
ground truth despite potential errors. The U.S. census is particularly valuable for devel-
oping robust handwriting recognition systems due to its extensive coverage by genealog-
ical organizations and the availability of dual transcriptions. From 1860 to 1940 (except
1880), each census round has been independently transcribed by both Ancestry.com and
FamilySearch.org, providing a rich source of validated training data. The frequency of
disagreement between transcribers—approximately 30 percent in our sample—highlights
how common transcription errors are. This wealth of dual-transcribed historical records,
driven by strong genealogical and research interest in U.S. censuses, provides an excep-
tional opportunity to develop and validate handwriting recognition methods that could
be applied to other historical documents with limited or single transcriptions.
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Figure 1: An example of a census form with average legibility

Note: This is an image of a form from the 1940 census for Enumeration District 4-252 of Rhode
Island. This enumeration district was chosen because the legibility of its census forms is closest to
the mean legibility for the state. We measure legibility by the percentage of records for which the
transcriptions from Ancestry.com and FamilySearch.org agree. (Ghosh et al., 2024).
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To ensure high-quality labels for training, we only include records where both tran-
scriptions agree exactly on first name, last name, and age. From our initial sample of
Rhode Island and selected regions of other states, this approach provides 392,085 training
examples for first names and 121,465 for last names, numbers that will increase substan-
tially as we expand to the full census.

There are substantially fewer last name training examples than first names due to our
conservative handling of “ditto” marks in the census forms. Census enumerators fre-
quently used ditto marks (”) to indicate that an individual shared their last name with
the person listed above them. Because our transcribed string data does not distinguish
between actual written last names and ditto marks, we exclude all cases where consecu-
tive records share the same last name. While this approach discards some valid training
examples, it ensures our model learns from clear, unambiguous cases.

Our training data includes 29,641 unique first names and 28,032 unique last names.
The similar counts suggest comparable diversity in first and last names, though first
names include variations like “James F” versus “James W”. We reserve 10% of records
as a test set for measuring out-of-sample performance.

2.2 Model Architecture and Pipeline

Our transcription pipeline addresses two fundamental challenges: identifying where names
are located on census forms, and reading the handwritten text in those locations. Both
tasks have traditionally been performed by human transcribers, who intuitively under-
stand how to scan a census page’s structure and interpret handwriting. Our approach
breaks these human capabilities into discrete computational steps.

The first challenge - finding names on the page - is surprisingly difficult for comput-
ers. While humans easily recognize the grid structure of census forms, computers need
explicit guidance to understand this organization. Previous approaches like LayoutParser
(Shen et al., 2021) were designed for newspaper articles, where text flows in columns.
These methods struggle with census forms, which pack information densely into tables.

We developed a specialized approach for census tables that mirrors how a human
might process the page structure. The process begins by identifying all horizontal and
vertical lines that make up the table grid. Then, the system finds where these lines in-
tersect to locate individual cells. Finally, it extracts the content of cells containing names.
This systematic decomposition allows our system to reliably locate and isolate each piece
of relevant information.

To handle cases where pages are warped or skewed from scanning - similar to how a
human can read a slightly tilted page - we process each page in three ways: looking at
the full page, just the top half, and just the bottom half. This redundancy helps minimize
transcription errors when parts of a page are degraded or distorted.

Once names are located on the page, we turn to the second challenge: reading the
handwritten text itself. Here, we diverge from traditional approaches in ways that may
seem counterintuitive but which we have found prove more effective. Most handwriting
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recognition systems try to process text as a sequence, similar to how humans read. In-
stead, we treat each character position independently, more like how a computer might
process a digital form with separate boxes for each letter. This simplification works well
for census names because they have relatively predictable lengths, each character typi-
cally occupies its own space, and the set of possible letters is known (a-z plus basic sepa-
rators). This constrained structure makes independent character recognition particularly
effective for census records.

Our character-by-character approach offers several key advantages over traditional
word-based recognition methods. Consider a difficult-to-read surname where the first
letter could be either ‘S’ or ‘B’. A system trained to recognize complete words might lean
toward transcribing it as “Smith” rather than “Brith” simply because “Smith” is a more
common surname. Our approach avoids this bias by making each letter prediction in-
dependently. For each character position, the model outputs a probability distribution
over possible letters. When transcribing an ambiguous first letter, the model might assign
60% probability to ‘S’, 35% probability to ‘B’, and 5% probability distributed across other
letters.

This granular uncertainty quantification proves valuable in two ways. First, it helps
prevent systematic biases toward common names that could distort linked samples. Sec-
ond, it provides detailed confidence measures that can inform downstream linking deci-
sions. A linking algorithm would ideally treat a name with high-confidence transcriptions
differently from one where several characters have ambiguous readings.

To further improve accuracy, we train separate models for first and last names, al-
lowing each model to specialize. The first name model learns common patterns in given
names (like the frequency of “John” or “Mary”), while the last name model focuses on sur-
name patterns. Due to the common use of ditto marks (”) to indicate repeated surnames
in census records, we have fewer training examples for last names than first names. To
overcome this data limitation, we first train the model on the larger set of first names, then
adapt this knowledge to the task of recognizing last names through transfer learning.

A crucial feature of our system is that it provides confidence scores for each character
it transcribes. When a character is ambiguous - for instance, if it could be either an ‘a’
or an ‘o’ - the model expresses this uncertainty rather than making an arbitrary choice.
These confidence scores prove valuable for downstream linking tasks, as they allow us to
identify cases where transcription uncertainty might affect matching decisions.

Our approach represents a significant departure from existing census transcription
methods. Traditional optical character recognition (OCR) systems expect clean, printed
text and struggle with handwriting. More advanced handwriting recognition systems
often try to process entire pages at once, which becomes computationally intensive and
error-prone with dense census formats. By breaking the problem into smaller pieces -
first finding name locations, then reading individual names - we achieve higher accuracy
while keeping computational requirements manageable.

The tradeoff is that our system requires significant upfront investment in specialized
models for census forms. However, once trained, the system processes new pages quickly
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and consistently, with costs that scale roughly linearly with the number of records. This
makes it particularly suitable for large-scale applications like full census transcription.

2.3 Model Performance

Table 1 presents our model’s out-of-sample performance on the test set. We evaluate
performance using two metrics: sequence accuracy and token accuracy. Sequence accu-
racy requires every character in a name to be correctly transcribed, while token accuracy
measures the proportion of individual characters transcribed correctly. This distinction
is important because partial matches may still be useful for record linkage, particularly
when using approximate string matching algorithms.

Table 1: Transcription Performance

Field Sequence Accuracy Token Accuracy

First name 97.38% 98.61%
Last name 94.54% 98.29%

Our model achieves 97.4% sequence accuracy and 98.6% token accuracy for first names.
Performance on last names is slightly lower at 94.5% sequence accuracy and 98.3% token
accuracy. These accuracy rates compare favorably to previous approaches and human
transcription benchmarks. Importantly, our model predicts each character independently
rather than attempting to recognize whole words, which helps avoid biasing transcrip-
tions toward common names.

However, these metrics may overstate real-world performance because our test set,
like our training data, only includes cases where human transcribers initially agreed.
When applying the model to cases where human transcribers disagree, performance is
likely lower. This selection effect merits careful examination since these disagreement
cases represent nearly 30 percent of our sample.

For records where human transcribers disagree, our model’s transcription matches
one of the two human transcriptions in 58% of cases, providing some validation of our
approach. Interestingly, the model agrees with Ancestry’s transcription in 11% of these
cases and with FamilySearch’s in 47% of cases, suggesting that FamilySearch transcrip-
tions may be somewhat more reliable on average. In the remaining 42% of disagreement
cases, our model produces a transcription that matches neither human transcription. A
manual review of a random sample of these cases suggests that they largely fall into two
categories: (a) cases involving particularly illegible handwriting, or (b) cases resulting
from incorrect segmentation.

Our analysis reveals three main types of transcription errors, which we illustrate in
Figure 2. Panel A shows examples of segmentation failures, where our system misidenti-
fies the boundaries of individual cells in census tables, particularly when forms are dam-
aged or misaligned. As shown in these examples, this can lead to incomplete name tran-
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scriptions - for instance, capturing only part of a long surname that extends beyond cell
boundaries. Panel B demonstrates legitimate character ambiguity, where multiple inter-
pretations are plausible (e.g., determining whether a character is an ’a’ or ’o’). Panel C
demonstrates cases where our model struggles with unusual handwriting styles, show-
ing paired examples of successful and failed transcriptions for enumerators whose writ-
ing differs substantially from our training data. These limitations suggest our method
will benefit from more training data, which we are currently working on.

(a) Ambiguous characters (B“o”ssette or B“a”ssette)

(b) Same name (“Archetto, Angelo”) with a successful transcription by our model (left) and an
incorrect one (“Arehetto, Angelo”, right)

Figure 2: Examples of transcription errors made by our model

The model’s computational requirements scale efficiently with dataset size. Processing
the complete Rhode Island sample of 299,880 records (approximately 0.22% of the 1940
U.S. Census) required approximately 1600 GPU-hours on standard GPU hardware. Based
on these results, we estimate processing the full 1940 Census will require roughly 16500
GPU-hours. While substantial, this is well within modern computational capabilities.

3 Census Linking Data and Methods

This section describes our data sources and linking methodology. We first explain our
sample construction and key variables, then detail how we incorporate our improved
transcriptions into existing linking approaches.

3.1 Census Records

Our analysis uses the 1930 and 1940 U.S. Census full-count datasets provided by IPUMS
(Ruggles et al., 2024). These datasets were created through a collaboration between IPUMS
and two genealogical organizations, Ancestry.com and FamilySearch.org (Ruggles, 2023).
We begin with 1940 to build a robust initial training dataset from records where indepen-
dent transcribers agree. The rich dual-transcribed data available from 1860 to 1940 pro-
vides significant opportunities to expand our training data and further improve model
performance. Our method can be applied to earlier censuses which often suffer from
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worse legibility and greater transcription errors, where the potential gains from improved
transcription are likely even larger due to generally less legible and standardized hand-
writing.

We restrict our sample to Rhode Island residents to reduce computational require-
ments during development of our method. Rhode Island’s population in 1940 was 348,255
males, of whom 299,880 were aged 10 or above and thus potentially linkable to the 1930
census. We exclude children under 10 as they would not have appeared in the 1930 cen-
sus.

Within this sample, we identify 89,218 records (29.9%) where Ancestry.com and Fam-
ilySearch.org transcriptions disagree on either first or last name or age. These records
form our target set for transcription improvements. The high rate of disagreement high-
lights the difficulty of consistent handwriting transcription even among trained human
transcribers.

The key variables used for linking include first and last names as the primary linking
variables, age or birth year to establish plausible matches, and birthplace (state for those
born in the US, and country for the foreign-born). Middle initials are used for validation
(described below) but not for linking.

3.2 Linking Methodology

We employ the widely-used linking algorithm developed by Abramitzky et al. (2012,
2014, 2019b). This algorithm proceeds in two stages. First, it identifies potential matches
based on exact name matching and birth year differences within ±2 years. Second, it
requires uniqueness within the age window to establish a definitive link.

Formally, for each 1930 record i, the algorithm:

1. Identifies all 1940 records j where:

• First and last names match exactly

• Birth state matches exactly

• |BirthYeari − BirthYearj| ≤ 2

2. Creates a link if and only if exactly one candidate match exists within the age win-
dow

This conservative approach prioritizes false negative over false positive errors, a com-
mon practice in the census linking literature. We maintain this standard algorithm rather
than developing a new one to isolate the impact of improved transcriptions from changes
in linking methodology.

Our baseline links use the Ancestry.com transcriptions distributed by IPUMS. We then
replace names in our target set with the machine learning transcriptions described in
Section 2 and rerun the linking algorithm. This allows us to measure the direct impact of
transcription improvements on linking success.
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While more elaborate linking algorithms exist (Helgertz et al., 2024; Buckles et al.,
2023), we use this simpler approach for two reasons. First, it clearly demonstrates how
transcription quality affects linking outcomes without conflating the effects of complex
matching procedures. Second, it is widely used in applied research, making our improve-
ments immediately relevant to current practice.

3.3 Analysis Sample

Table 2 presents summary statistics for our analysis sample, compared to males aged
10 and above across all states and those specifically in the Northeast. Rhode Island’s
population was more urban and had higher educational attainment than the national
average, potentially affecting the generalizability of our results. However, the rate of
transcription disagreement (29.9%) is similar to national levels, suggesting our findings
about transcription improvements may generalize well.

The subsample where transcribers disagree shows some systematic differences from
records where they agree. Disagreement is more common among foreign-born individu-
als and those with foreign-born parents, as well as among individuals without any formal
education (see Table 3).

These patterns align with intuition about when transcription is more challenging.
They also highlight the potential for transcription errors to create systematic biases in
linked samples, particularly for historically disadvantaged populations.

We validate our links using middle name initials, which were recorded but not used in
the linking process. This approach follows Bailey et al. (2020) and provides an indepen-
dent check on link quality. The validation rate – the share of links where middle initials
match when available – serves as our primary quality metric alongside raw linking rates.

A limitation of our Rhode Island sample is that we cannot observe false negatives
caused by transcription errors in the 1930 census, which we have not yet processed with
our machine learning pipeline. This suggests our measured improvements may under-
state the potential gains from applying our method to both censuses in a linking pair.

In the next section, we present results showing how our transcription improvements
affect both the quantity and quality of links in this sample, with particular attention to
traditionally under-linked populations.

4 Results

This section presents the impact of our improved transcriptions on census linking out-
comes. We first document overall improvements in linking rates, then analyze heteroge-
neous effects across subgroups with particular attention to racial and geographic dispar-
ities. Finally, we validate our results using independent data sources.
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Table 2: Socio-demographic characteristics of the analysis sample compared to the popu-
lation and the Northeast residents

US Northeast Rhode
Island

Incongruent transcription 0.283 0.306 0.299
Black 0.089 0.034 0.014
American Indian 0.002 0.000 0.000
Asian 0.003 0.001 0.001
Born in Northeast 0.226 0.736 0.749
Born in Midwest 0.292 0.019 0.011
Born in South 0.318 0.036 0.010
Born in West 0.052 0.003 0.002
Foreign-born 0.111 0.203 0.227
Father is foreign-born 0.238 0.449 0.531
Live in urban area 0.555 0.728 0.714
Live on farm 0.233 0.071 0.026
No education 0.031 0.034 0.038
Graduated elementary sch. 0.631 0.698 0.654
White-collar occupation 0.264 0.320 0.281
Skilled occupation 0.330 0.407 0.494
Unskilled occupation 0.275 0.239 0.212
Farmer 0.131 0.034 0.014
Yearly income 1,424.649 1,574.490 1,515.744
Observations 55,350,482 15,358,520 298,388

This table compares the socio-demographic characteristics of
three samples: all males aged 10 and above in the 1940 Census
(column labeled ”US”); the same demographic group residing
in the Northeast (”Northeast”); and those in Rhode Island. Fe-
males and individuals under age 10 are excluded, as they are
not linked by the algorithm used. All characteristics, except for
yearly income, are binary.
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Table 3: Characteristics of individuals with congruent transcriptions vs. incongruent tran-
scriptions

Transcription
Diff.

Congruent Incongruent
Black 0.015 0.011 -0.004***
American Indian 0.000 0.000 0.000
Asian 0.001 0.001 0.000
Born in Northeast 0.762 0.722 -0.040***
Born in Midwest 0.009 0.009 -0.000
Born in South 0.010 0.008 -0.002***
Born in West 0.002 0.002 0.000
Foreign-born 0.216 0.258 0.042***
Father is foreign-born 0.517 0.574 0.057***
Live in urban area 0.707 0.715 0.008***
Live on farm 0.028 0.022 -0.007***
No education 0.035 0.044 0.010***
Graduated elementary sch. 0.656 0.640 -0.016***
White-collar occupation 0.277 0.288 0.011***
Skilled occupation 0.496 0.487 -0.009***
Unskilled occupation 0.212 0.213 0.001
Farmer 0.015 0.012 -0.002***
Yearly income 1,504.939 1,481.150 -23.789***
Observations 197,496 84,187 298,388

Note: The table compares the socio-demographic characteristics of
individuals whose name transcriptions are congruent between An-
cestry and FamilySearch with those whose transcriptions are not
congruent. The sample is restricted to males in Rhode Island aged
10 and above. All characteristics, except for yearly income, are bi-
nary. The column labeled ”Diff.” shows the difference in means be-
tween the two samples. Standard errors are omitted. * for p < 0.10,
** for p < 0.05, and *** for p < 0.01.
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4.1 Impact on Linking Rates

Table 4 presents our main results comparing linking rates before and after transcription
improvements. For records where human transcribers initially disagreed (our target set),
the linking rate increased from 8 to 21%, representing a 147 percent improvement. This
dramatic increase suggests that transcription errors were a major barrier to successful
linking for these records.

Table 4: Quality of linked samples before and after transcriptions are improved

Before After
% change

# of records Rate (Share) # of records Rate (Share)

Linkage rate
Target 84,538 0.084 84,538 0.208 +147%

All 299,880 0.270 299,880 0.302 +12%

Share validated
Target 2,078 0.608 4,835 0.839 +38%

All 21,663 0.857 24,265 0.876 +2%

Note: This table presents changes in the linkage rate and the share validated before and after transcrip-
tions are improved. ‘Before’ improvement links use transcriptions from Ancestry. Share validated is
equal to the number of linked records with matching middle name initials divided by the number of
linked records with non-missing middle name initials.

The quality of these new links appears high. The share of links validated by matching
middle initials increased from 61% to 84%, a 38 percent improvement. This simultaneous
increase in both quantity and quality of links suggests that our improved transcriptions
are recovering true matches rather than creating spurious ones.

When averaged across all records (including those where human transcribers agreed),
our improvements increased the overall linking rate by 12 percent and the overall val-
idation rate by 2 percent. These aggregate effects are smaller because they include the
roughly 70 percent of records where human transcribers agreed and thus received no
transcription improvements.

4.2 Validation Using 1% Sample

To further validate our transcription improvements, we leverage genealogical profiles
from FamilySearch.org linked to the IPUMS 1% sample of the 1940 census. Following
Hwang and Squires (2024), who used these profiles to study measurement error in census
data, we treat the names recorded in FamilySearch profiles as reference “true” names
since they incorporate information from multiple historical sources beyond just census
records.

Our validation sample consists of records that satisfy three criteria: (1) they appear in
the IPUMS 1% sample, (2) they have an associated FamilySearch profile with birth date
information (ensuring the profile incorporates non-census sources), and (3) at least one
of our three transcriptions (Ancestry, FamilySearch census, or machine learning) matches
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the profile name exactly. This last restriction helps exclude cases where name differences
likely reflect legitimate variations (e.g., Americanization of names) rather than transcrip-
tion errors.

We expect this validation to reveal systematic differences between human and ma-
chine transcription errors. Based on our preliminary analysis of error patterns, we hy-
pothesize that our character-by-character prediction approach produces more localized
errors compared to human transcription—typically single-character substitutions or con-
fusion between similar-looking characters like n/r or a/o. In contrast, human transcrip-
tion differences tend toward more substantial variations, such as multiple-character dif-
ferences or entirely missing names.

This validation approach offers key advantages because FamilySearch profile names
incorporate multiple historical sources and have often been verified by descendants. While
the 1% sample may not be fully representative, this validation exercise provides impor-
tant evidence about whether our improvements represent genuine accuracy gains rather
than arbitrary changes to difficult-to-read names. Results from this validation analysis
are forthcoming and will be included in the final version of this paper.

4.3 Heterogeneous Effects

A central question is how machine learning transcription affects linking rates across dif-
ferent populations and document qualities. We analyze heterogeneous effects across three
dimensions: demographic characteristics, geographic patterns, and document legibility.
Our findings suggest that our improvements are largest where transcription challenges
have historically been most severe.

Demographic Characteristics

Figure 3 shows how linking rates vary across different socio-demographic groups. The
left panel displays pre-improvement linking rates, which range from 13.6% for those with
no schooling to 30.9% for clerical workers, highlighting substantial variation. The right
panel shows percentage increases in linking rates after our improvements.

The baseline linking rate for Black residents in our sample was 18.3% compared to
27.1% for white residents, consistent with the well-documented lower match rates for
Black Americans in historical census linking (Abramitzky et al., 2019a; Bailey et al., 2020).
Our improvements increased linking rates by similar rates for both groups: 11.4% for
Black residents compared to 12.2% for white residents. We likewise find consistent im-
provements across groups with lower baseline linking rates, including foreign-born in-
dividuals (+14.5%), those with no formal schooling (+9.2%), and those with non-English
mother tongue (+14.5%). The exception is institutional inmates, whose linking rate de-
creased slightly (−1%). This appears to reflect particular challenges in segmenting insti-
tutional census pages, which often used modified formats.
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No schooling

Non-relatives

English is not mother tongueForeign-born

Non-whites

Group quarters

Moved btw. states
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Figure 3: Quality of linked samples before and after transcription improvements for each
socio-demographic group

Note: These scatter plots display the quality measures of linked samples before and after transcription improvements for each socio-
demographic group. Each socio-demographic group is defined as individuals in our analysis sample who share the same socio-
demographic characteristic. For example, the marker labeled “Group quarters” corresponds to people who reported in the 1940
census as living in a group quarter. We use the following socio-demographic variables to define groups: residence type, relation to
head, marital status, race, birthplace, years of schooling, employment status, self-employment status, occupation, industry, weeks
worked in 1939, hours worked in the previous week, 5-year migration status, and non-wage income status. The dashed line in each
panel is the 45-degree line.
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Geographic Patterns

Geographic variation in transcription improvements reveals important patterns in both
the scope of initial transcription problems and the effectiveness of our solution. At the
county level, the 5th and 95th percentile of the distribution of the share of records with
incongruent transcription is 18% and 42%, with notably higher rates occurring in coun-
ties with above-median share of individuals born in the South, below age 30, or without
formal education.

Document Legibility Effects

Figure 4 shows how our improvements vary with document legibility, measured at the
enumeration district level following Ghosh et al. (2024). The impact is strongest for low-
legibility districts, where linking rates increased by up to 35 percent. These larger gains in
challenging districts reflect our model’s particular effectiveness at handling hard-to-read
handwriting. While human transcribers often struggle with such cases (as evidenced
by their high disagreement rates), our machine learning approach can leverage patterns
learned from clearer examples to decipher less legible text. This suggests that our method
is most valuable precisely where traditional transcription approaches face their greatest
challenges.

The strong performance on low-legibility records is especially valuable. Records from
enumeration districts in the lowest quartile of legibility demonstrate the scope of the chal-
lenge, showing 125% higher rates of transcription disagreement and 30% lower baseline
linking rates. That our approach performs best in precisely these challenging cases sug-
gests it may help improve the representativeness of linked samples. The combination of
substantial improvements for multiple demographic groups and stronger performance
in low-legibility areas indicates that machine learning transcription can help expand the
coverage of linked historical data.

5 Conclusion

This paper introduces a machine learning approach to improve name transcription in
historical U.S. Census data, resulting in substantial gains in linking rates and match qual-
ity. Our method addresses transcription challenges in low-legibility records and provides
notable improvements for historically under-linked groups such as non-English speak-
ers, foreign-born individuals, and those with low education levels. These results not only
enhance the representativeness of linked datasets but also reduce biases in the empirical
findings derived from them.

Two major extensions of this work are currently in progress. First, we are scaling up
our transcription pipeline to process the complete 1930 and 1940 censuses. While our
Rhode Island sample demonstrates the potential of our approach, processing both cen-
suses in their entirety will allow us to fully realize the benefits of improved transcription
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Figure 4: Correlation between legibility of census form and quality of linked samples
before and after transcription improvements
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Note: These binscatter plots illustrate how the correlation between the legibility of census forms
and quality measures of linked samples change after transcription improvements. The left panel
corresponds to linkage rates, and the right panel to share validated. The unit of observation for
these plots is an enumeration district. The legibility of census forms for an enumeration district is
defined as in Ghosh et al. (2024), i.e., the share of records for which the transcriptions from Ances-
try.com and FamilySearch.org agree. To create these plots, we follow the methodology proposed
by Cattaneo et al. (2024).
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for cross-census linking.
Second, we plan to directly incorporate our model’s character-level uncertainty mea-

sures into the linking algorithm itself. Currently, our pipeline produces improved tran-
scriptions that are then fed into standard linking procedures. However, our character-by-
character prediction approach provides rich information about transcription uncertainty
that could inform linking decisions. For example, when deciding whether two records
match, the algorithm could weight character differences less heavily when they occur in
positions where the model expressed low confidence in its transcription.

Beyond these immediate extensions, our approach shows promise for application to
earlier U.S. censuses and international historical records, where legibility issues are often
more pronounced. The method’s strong performance on low-legibility records suggests
it could be particularly valuable for these more challenging cases. By demonstrating that
machine learning can systematically improve transcription quality while reducing de-
mographic and geographic biases, this work represents an important step toward more
representative historical microdata.
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A Appendix: Machine Learning Transcription Methodol-
ogy

A.1 Pipeline Overview

Our machine learning pipeline splits the handwritten text recognition task into three se-
quential components: (1) layout classification, (2) table segmentation, and (3) handwritten
text recognition. For census forms, which follow a standardized layout, we can skip the
first step. This appendix provides detailed technical specifications for each component of
our pipeline.

The focus of our work is limited to tabular documents - specifically, those containing
tables with sequences of numbers and characters organized in cells. This structure is char-
acteristic of census forms, birth records, death records, and similar historical documents.

A.2 Table Segmentation

Table segmentation extracts images corresponding to each field (cell) in a given table from
the source image. We accomplish this through the following process:

First, we note the coordinates of line intersections and line endpoints, which we refer
to as template key points. We construct an ‘overlay,’ defined as the set of rectangles that
encloses each field of interest, where each rectangle is represented by the coordinates of
its four corners.

For identifying table structures, we use a semantic segmentation model to extract ver-
tical and horizontal lines from the census records. We then align the set of intersection
points of each page with pre-specified templates using efficient probabilistic point-set reg-
istration (FilterReg) by Gao and Tedrake (2019). This allows us to calculate transformation
matrices for each image which we use, in combination with our pre-specified overlay, to
crop each field of interest into a separate image.

The point set registration task involves aligning points between an image and a tem-
plate. Our approach uses neural networks to identify lines in tables and then com-
pares images using point cloud transformations. Once we identify the points, it becomes
straightforward to crop out the segments.

Once the template and overlay are established, we process the remaining documents,
which we designate as ‘target’ images. For each target image, we identify key points cor-
responding to those defined in the template, accomplished through standard computer
vision operations that detect vertical and horizontal table lines.

To address the challenge of image distortion, which commonly occurs in historical
documents due to scanning artifacts and paper degradation, we implement a multi-pass
processing approach. Each page undergoes processing at three different scales: the full
page, the top half, and the bottom half. This redundant processing strategy helps capture
details that might be lost or distorted at any single scale. For each scale, we compute a
distinct transformation matrix, resulting in three separate segmentations of every field on
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a census record page.
The transcription process similarly leverages this multi-scale approach. We generate

three independent transcriptions for each field—one from each scale—and determine the
final transcription through majority voting. In cases where no majority exists, we select
the transcription associated with the highest model confidence score. This ensemble ap-
proach helps mitigate errors that might arise from processing at any single scale.

Our segmentation model incorporates a quality control mechanism by estimating the
alignment accuracy between the source image points and the overlay template. During
the training phase, we take a conservative approach by excluding any segmented images
where our model indicates uncertainty in the segmentation quality. However, we retain
these uncertain segments for post-training transcription to maintain comprehensive cov-
erage of the census records while preventing potentially noisy examples from affecting
the model’s training process.

A.3 Neural Network Architecture

For transcription, we train neural networks to convert the contents of each segmented
image into text. Our networks are based on the EfficientNetV2 architecture (Tan and Le,
2021). We specifically use an EfficientNetV2-S variant as a balance between performance
and computational requirements. This choice is motivated by EfficientNetV2’s strong
trade-off between accuracy and computational requirements, as demonstrated in bench-
marks against many common convolutional neural networks and vision transformer ar-
chitectures

Unlike many handwritten text recognition systems that use recurrent architectures,
we opt for a non-recurrent architecture that is faster to train and performs well even with
limited labeled data. We combine the backbone of an EfficientNetV2 model with the
classification scheme proposed in Goodfellow et al. (2013), consisting of a separate classi-
fication head for each token in a sequence. In total, we use up to 40 classification heads,
allowing us to transcribe any name consisting of at most 40 characters.

Our model provides probability distributions over characters for each position in the
sequence, enabling us to quantify uncertainty at both the character and name level. This
uncertainty quantification is particularly valuable for downstream tasks like record link-
age, where we can use these confidence measures to inform linking decisions.

Our alphabet consists of the letters a-z and “space”. Due to inconsistencies in source
data, we do not differentiate between “space”, “’”, and “-”, thus treating names like
“Mary M”, “Mary’M”, and “Mary-M” as identical.

To regularize our networks and improve generalization, we employ several comple-
mentary techniques. We use dropout (Srivastava et al., 2014) with probability 0.4 to ran-
domly disable neurons during training, preventing co-adaptation of feature detectors.
Additionally, we implement stochastic depth (Huang et al., 2016) with probability 0.25,
which randomly drops entire layers during training to create an implicit ensemble of net-
works with varying depths. Label smoothing (Szegedy et al., 2016) with value 0.1 helps
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prevent the model from becoming overconfident in its predictions. We also apply weight
decay at a rate of 0.000007 to control model complexity and prevent overfitting.

For data augmentation, we employ two primary techniques to artificially expand our
training dataset and improve model robustness. We use RandAugment (Cubuk et al.,
2020) with N=2 and M=7, which automatically searches for and applies optimal image
augmentation policies. We also implement Random erase (Zhong et al., 2020) with proba-
bility 0.4, which randomly masks out rectangular regions of input images during training
to improve the model’s ability to handle occlusions and corrupted inputs.

Our optimization strategy combines several approaches to ensure stable and efficient
training. We use stochastic gradient descent with a momentum value of 0.9 to help over-
come local minima and accelerate convergence. A cosine annealing scheduler with warm-
up modulates the learning rate throughout training, starting with a gradual increase and
then smoothly decreasing it according to a cosine function. We apply gradient clipping
at 0.02 to prevent explosive gradients, and use a batch size of 128 to balance between
computational efficiency and optimization stability.

Model performance is evaluated using two metrics:

1. Sequence accuracy: measures the share of transcriptions where each character ex-
actly matches the label

2. Token accuracy: measures the share of tokens that are transcribed correctly, allow-
ing partial credit for names transcribed mostly correctly

Training parameters are specified as follows:

Table A.1: Model Training Parameters

Parameter Value

RandAugment N=2, M=7
Batch size 128
Gradient clip value 0.02
Dropout probability 0.4
Stochastic depth probability 0.25
Peak learning rate 0.5
Momentum 0.9
Random erase probability 0.4
Label smoothing 0.1
Weight decay 0.000007

A.4 Training Process

We train separate models for first and last names, motivated in part by a limitation of our
training data labels, which do not distinguish between a last name being present on an
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image or instead being recorded as a “ditto” mark referring to the last name in a previous
row.

Our training data is constructed from human transcriptions from Ancestry and Fam-
ilySearch of the 1940 US census. To obtain high-quality labels, we only include tran-
scriptions where both first and last names, as well as age, match exactly between the
two sources. Further, we exclude all segmented images where our segmentation model
reports any level of uncertainty. This results in 392,085 labels for our initial dataset, of
which we reserve 10% as a test set for out-of-sample performance measurements. Our
training data includes 29,641 unique first names, including differentiating between vari-
ations such as “James F” and “James W”.

To mitigate issues related to “dittos” when creating the training data for our last name
model, we discard all rows where the last name of the individual in the previous row
matches that of the current row. A name is never written as a “ditto” on the source image
unless it is the same last name as that of the above row, and we thus remove all segmented
images with last names written as a “ditto”. This has the side effect of also removing all
“non-ditto” last names that happen to match that of the previous row, but we believe
this conservative approach is nevertheless optimal, as we have observed significant chal-
lenges when training a last name transcription model where a large share of all labels
do not match the content of the segmented image. After applying these restrictions, we
retain 121,465 labels for last names, consisting of 28,032 unique last names, of which we
again reserve 10

We evaluate model performance using two complementary metrics. “Sequence ac-
curacy” measures the share of transcriptions where each character exactly matches the
label, marking a transcription as incorrect if just one character differs from the label.
“Token accuracy” measures the share of tokens that are transcribed correctly, awarding
partial points for a name transcribed mostly right. This second measure may be more
appropriate when using the transcribed names for linkage that allows some degree of
non-exactness, such as when using Jaro-Winkler string distance.

We first train a model for transcription of first names using a pre-trained EfficientNetV2-
S model as the starting point of the model’s backbone and train for 90 epochs. We then
use this model to initialize our model for transcription of last names, which we train for
180 epochs (we train for additional epochs due to the smaller number of training sam-
ples). Our first name model achieves 97.38% sequence accuracy and 98.61% token accu-
racy, while our last name model achieves 94.54% sequence accuracy and 98.29% token
accuracy. The lower sequence accuracy for last names may reflect the smaller number of
training samples compared to our first name model.

While these transcription accuracies are very high, this may in part reflect that the im-
ages we use to evaluate our models are relatively easy to transcribe, as we only include
labels where Ancestry and FamilySearch transcriptions agree and further exclude images
that may be incorrectly segmented. This likely upwards biases the transcription accura-
cies we report, but avoiding this bias without introducing a potential downwards bias is
challenging. While keeping only labels where both transcriptions agree may lead to an
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overrepresentation of “easy” images, removing this restriction would require choosing
either the Ancestry or FamilySearch label as ground truth, potentially including a large
share of incorrect labels.
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