by Harry Kitsikopoulos (academic director, Unbound Prometheus)
Engineering skills in Britain improved during the eighteenth century but progress was not linear. My research uses a novel approach to quantifying the trends from the first appearance of the technology of steam power (1706) through to the last quarter of the century (the Watt era), using a large amount of data on fuel consumption rates.
Britain was a very unlikely candidate for the invention of steam engines, as I argue in my 2016 book, Innovation and Technological Diffusion: An Economic History of the Early Steam Engines. It was French and Italians who first rediscovered, translated and published the ancient texts of Hero of Alexandria on steam power; they also discovered the existence of vacuum in nature, the main principle of a steam engine’s working mechanism.
But Britain had two advantages: first, a divorce-obsessed king who detached the island from the Catholic dogma and its alliance with the Cartesian epistemological paradigm, both denying the existence of vacuum in nature. The same king also brought a seismic institutional transformation by passing monastic properties under the ownership of lay landlords, a class far more keen on solving the water drainage problem plaguing the mining industry in its drive to exploit mineral wealth.
Britain was also fortunate in another respect: it was relatively backward in terms of mining technology! That proved to be a good thing. While mining districts in Germany and Liège used a technology that resolved the drainage problem, Britain failed to imitate them, hence forcing itself to seek alternative solutions, thereby leading to the invention of the steam engine.
Grand inventions earn glorious references in school textbooks, but it is the diffusion of a technology that contributes to economic growth, a process that relies on the development of relevant human capital.
The records reveal that there were not much more than a dozen engineers who were active in erecting engines during the period 1706-75, including Thomas Newcomen, the obscure ironmonger from Devon who came up with the first working model. The figure increased to at least 60 during the last quarter of the century through the action of the invisible hand: the initial scarcity of such skills raised wages, which, in turn, acted as stimuli transferring talent from related engineering occupations.
My new study traces the production and marketing strategies of this group, which ranged from the narrow horizons of certain figures concentrating on the erection of engines in one locality, a single model, or focusing on one industry all the way to the global outlook of the Boulton and Watt firm.
The last question I pose is perhaps the most interesting: did British engineers get better during the eighteenth century in managing these engines?
Measuring skill is not a straightforward affair. Two well-respected experts at the time came up with tables that specified what the ideal fuel rates ought to have been for engines of different hp. When plotted in a graph these two variables depict a curve of ideal rates.
My analysis uses two distinct datasets with 111 fuel rate observations recorded in working engines – one for the older Newcomen model and another for the newer Watt engines. These actual fuel rates were plotted as bullet points around the respective ‘ideal’ curves. A progressively narrower distance between the curves and the bullet points would indicate higher efficiency and improved engineering skills.
The results reveal that for the first 25 years following the appearance of both models, there was no consistent trend: the bullet points alternated coming closer and moving away from the ideal curves. But the data also reveal that these initial patterns gave way to trends revealing consistent progress.
In an era of practical tinkerers lacking a formal educational system when it comes to this particular skill, British engineers did get better through a classic process of ‘learning-by-doing’, But this only happened after an initial stage of adjustment, of getting used to models with different working mechanisms.